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1 INTRODUCTION

For computers to process digital images,
whether satellite photos or x-rays, there is
a need to recognize the edges of objects.
Image edges, which are rapid changes or
discontinuities in image intensity, reflect
a boundary between dissimilar regions in
an image and thus are important basic

Ideal Edge Real Edge

characteristics of an image. They often indi-
cate the physical extent of objects in the
image or a boundary between light and
shadow on a single surface or other regions
of interest.

The lowermost two figures at the left indicate

the changes in image intensity of the ideal and

real edges above, when moving from right to left.

We see that real intensities can change rapidly, but

not instantaneously. In principle, the edge may be

found by looking for very large changes over small

distances.

However, a digital image is discrete rather than

continuous: it is a matrix of nonnegative entries

that provide numerical descriptions of the shades of gray for the pixels in the

image, where the entries vary from 0 for a white pixel to 1 for a black pixel. An

analysis must be done using the discrete analog of the derivative to measure

the rate of change of image intensity in two directions.

From Chapter 1 of Elementary Linear Algebra, Second Edition. Lawrence E. Spence, Arnold J. Insel, Stephen H. Friedberg. 
Copyright © 2008 by Pearson Education, Inc. All rights reserved.
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2 1 Introduction

The Sobel matrices, S1 =



−1 0 1
−2 0 2
−1 0 1


 and S2 =




1 2 1
0 0 0

−1 −2 −1


 provide a method for measuring

these intensity changes. Apply the Sobel matrices S1

and S2 in turn to the 3x3 subimage centered on each
pixel in the original image. The results are the changes of
intensity near the pixel in the horizontal and the vertical
directions, respectively. The ordered pair of numbers
that are obtained is a vector in the plane that provides

the direction and magnitude of the intensity change
at the pixel. This vector may be thought of as the dis-
crete analog of the gradient vector of a function of two
variables studied in calculus.

Replace each of the original pixel values by the
lengths of these vectors, and choose an appropriate
threshold value. The final image, called the thresholded
image, is obtained by changing to black every pixel for
which the length of the vector is greater than the thresh-
old value, and changing to white all the other pixels.
(See the images below.)

Original Image Thresholded Image

Notice how the edges are emphasized in the
thresholded image. In regions where image intensity is
constant, these vectors have length zero, and hence the
corresponding regions appear white in the thresholded

image. Likewise, a rapid change in image intensity, which
occurs at an edge of an object, results in a relatively dark
colored boundary in the thresholded image.
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CHAPTER

1
MATRICES, VECTORS,
AND SYSTEMS OF LINEAR
EQUATIONS

The most common use of linear algebra is to solve systems of linear equations,
which arise in applications to such diverse disciplines as physics, biology,
economics, engineering, and sociology. In this chapter, we describe the most

efficient algorithm for solving systems of linear equations, Gaussian elimination. This
algorithm, or some variation of it, is used by most mathematics software (such as
MATLAB).

We can write systems of linear equations compactly, using arrays called matrices
and vectors. More importantly, the arithmetic properties of these arrays enable us to
compute solutions of such systems or to determine if no solutions exist. This chapter
begins by developing the basic properties of matrices and vectors. In Sections 1.3
and 1.4, we begin our study of systems of linear equations. In Sections 1.6 and 1.7,
we introduce two other important concepts of vectors, namely, generating sets and
linear independence, which provide information about the existence and uniqueness
of solutions of a system of linear equations.

1.1 MATRICES AND VECTORS
Many types of numerical data are best displayed in two-dimensional arrays, such as
tables.

For example, suppose that a company owns two bookstores, each of which sells
newspapers, magazines, and books. Assume that the sales (in hundreds of dollars) of
the two bookstores for the months of July and August are represented by the following
tables:

July
Store 1 2

Newspapers 6 8
Magazines 15 20

Books 45 64

and

August
Store 1 2

Newspapers 7 9
Magazines 18 31

Books 52 68

The first column of the July table shows that store 1 sold $1500 worth of magazines
and $4500 worth of books during July. We can represent the information on July sales
more simply as




6 8
15 20
45 64


 .

3



4 CHAPTER 1 Matrices, Vectors, and Systems of Linear Equations

Such a rectangular array of real numbers is called a matrix.1 It is customary to refer to
real numbers as scalars (originally from the word scale) when working with a matrix.
We denote the set of real numbers by R.

Definitions A matrix (plural, matrices) is a rectangular array of scalars. If the matrix
has m rows and n columns, we say that the size of the matrix is m by n, written
m × n . The matrix is square if m = n . The scalar in the i th row and j th column is
called the (i, j )-entry of the matrix.

If A is a matrix, we denote its (i , j )-entry by aij . We say that two matrices A and
B are equal if they have the same size and have equal corresponding entries; that is,
aij = bij for all i and j . Symbolically, we write A = B .

In our bookstore example, the July and August sales are contained in the matrices

B =



6 8
15 20
45 64


 and C =




7 9
18 31
52 68


 .

Note that b12 = 8 and c12 = 9, so B �= C . Both B and C are 3 × 2 matrices. Because
of the context in which these matrices arise, they are called inventory matrices.

Other examples of matrices are

�
2
3 −4 0
π 1 6

�
,




3
8
4


 , and

�−2 0 1 1
�
.

The first matrix has size 2 × 3, the second has size 3 × 1, and the third has size 1 × 4.

Practice Problem 1 � Let A =
�
4 2
1 3

�
.

(a) What is the (1, 2)-entry of A?

(b) What is a22? �

Sometimes we are interested in only a part of the information contained in a
matrix. For example, suppose that we are interested in only magazine and book sales
in July. Then the relevant information is contained in the last two rows of B ; that is,
in the matrix E defined by

E =
�
15 20
45 64

�
.

E is called a submatrix of B . In general, a submatrix of a matrix M is obtained
by deleting from M entire rows, entire columns, or both. It is permissible, when
forming a submatrix of M , to delete none of the rows or none of the columns of M .
As another example, if we delete the first row and the second column of B , we obtain
the submatrix �

15
45

�
.

1 James Joseph Sylvester (1814–1897) coined the term matrix in the 1850s.
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1.1 Matrices and Vectors 5

MATRIX SUMS AND SCALAR MULTIPLICATION
Matrices are more than convenient devices for storing information. Their usefulness
lies in their arithmetic. As an example, suppose that we want to know the total numbers
of newspapers, magazines, and books sold by both stores during July and August. It
is natural to form one matrix whose entries are the sum of the corresponding entries
of the matrices B and C , namely,

Store 1 2
Newspapers
Magazines

Books




13 17
33 51
97 132


 .

If A and B are m × n matrices, the sum of A and B , denoted by A + B , is the
m × n matrix obtained by adding the corresponding entries of A and B ; that is, A + B
is the m × n matrix whose (i , j )-entry is aij + bij . Notice that the matrices A and B
must have the same size for their sum to be defined.

Suppose that in our bookstore example, July sales were to double in all categories.
Then the new matrix of July sales would be




12 16
30 40
90 128


 .

We denote this matrix by 2B .
Let A be an m × n matrix and c be a scalar. The scalar multiple cA is the

m × n matrix whose entries are c times the corresponding entries of A; that is, cA is
the m × n matrix whose (i , j )-entry is caij . Note that 1A = A. We denote the matrix
(−1)A by −A and the matrix 0A by O . We call the m × n matrix O in which each
entry is 0 the m × n zero matrix.

Example 1 Compute the matrices A + B , 3A, −A, and 3A + 4B , where

A =
�
3 4 2
2 −3 0

�
and B =

�−4 1 0
5 −6 1

�
.

Solution We have

A + B =
�−1 5 2

7 −9 1

�
, 3A =

�
9 12 6
6 −9 0

�
, −A =

�−3 −4 −2
−2 3 0

�
,

and

3A + 4B =
�
9 12 6
6 −9 0

�
+

�−16 4 0
20 −24 4

�
=

�−7 16 6
26 −33 4

�
.

Just as we have defined addition of matrices, we can also define subtraction. For
any matrices A and B of the same size, we define A − B to be the matrix obtained by
subtracting each entry of B from the corresponding entry of A. Thus the (i , j )-entry
of A − B is aij − bij . Notice that A − A = O for all matrices A.

5



6 CHAPTER 1 Matrices, Vectors, and Systems of Linear Equations

If, as in Example 1, we have

A =
�

3 4 2
2 −3 0

�
, B =

�−4 1 0
5 −6 1

�
, and O =

�
0 0 0
0 0 0

�
,

then

−B =
�

4 −1 0
−5 6 −1

�
, A − B =

�
7 3 2

−3 3 −1

�
, and A − O =

�
3 4 2
2 −3 0

�
.

Practice Problem 2 � Let A =
�

2 −1 1
3 0 −2

�
and B =

�
1 3 0
2 −1 4

�
. Compute the following matrices:

(a) A − B

(b) 2A

(c) A + 3B �

We have now defined the operations of matrix addition and scalar multiplication.
The power of linear algebra lies in the natural relations between these operations,
which are described in our first theorem.

THEOREM 1.1

(Properties of Matrix Addition and Scalar Multiplication) Let A, B , and C be
m × n matrices, and let s and t be any scalars. Then

(a) A + B = B + A. (commutative law of matrix addition)

(b) (A + B ) + C = A + (B + C ). (associative law of matrix addition)

(c) A + O = A.

(d) A + (−A) = O .

(e) (st)A = s(tA).

(f) s(A + B ) = sA + sB .

(g) (s + t)A = sA + tA.

PROOF We prove parts (b) and (f). The rest are left as exercises.
(b) The matrices on each side of the equation are m × n matrices. We must

show that each entry of (A + B ) + C is the same as the corresponding entry
of A + (B + C ). Consider the (i , j )-entries. Because of the definition of matrix
addition, the (i , j )-entry of (A + B ) + C is the sum of the (i , j )-entry of A + B ,
which is aij + bij , and the (i , j )-entry of C , which is cij . Therefore this sum equals
(aij + bij ) + cij . Similarly, the (i , j )-entry of A + (B + C ) is aij + (bij + cij ).
Because the associative law holds for addition of scalars, (aij + bij ) + cij =
aij + (bij + cij ). Therefore the (i , j )-entry of (A + B ) + C equals the (i , j )-entry
of A + (B + C ), proving (b).

(f) The matrices on each side of the equation are m × n matrices. As in
the proof of (b), we consider the (i , j )-entries of each matrix. The (i , j )-entry of
s(A + B ) is defined to be the product of s and the (i , j )-entry of A + B , which is
aij + bij . This product equals s(aij + bij ). The (i , j )-entry of sA + sB is the sum
of the (i , j )-entry of sA, which is saij , and the (i , j )-entry of sB , which is sbij .
This sum is saij + sbij . Since s(aij + bij ) = saij + sbij , (f) is proved. �

Because of the associative law of matrix addition, sums of three or more matrices
can be written unambiguously without parentheses. Thus we may write A + B + C
instead of either (A + B ) + C or A + (B + C ).
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1.1 Matrices and Vectors 7

MATRIX TRANSPOSES
In the bookstore example, we could have recorded the information about July sales
in the following form:

Store Newspapers Magazines Books
1 6 15 45
2 8 20 64

This representation produces the matrix
�
6 15 45
8 20 64

�
.

Compare this with

B =



6 8
15 20
45 64


 .

The rows of the first matrix are the columns of B , and the columns of the first matrix
are the rows of B . This new matrix is called the transpose of B . In general, the
transpose of an m × n matrix A is the n × m matrix denoted by AT whose (i , j )-entry
is the (j , i )-entry of A.

The matrix C in our bookstore example and its transpose are

C =



7 9
18 31
52 68


 and C T =

�
7 18 52
9 31 68

�
.

Practice Problem 3 � Let A =
�
2 −1 1
3 0 −2

�
and B =

�
1 3 0
2 −1 4

�
. Compute the following matrices:

(a) AT

(b) (3B )T

(c) (A + B )T �

The following theorem shows that the transpose preserves the operations of
matrix addition and scalar multiplication:

THEOREM 1.2

(Properties of the Transpose) Let A and B be m × n matrices, and let s be any
scalar. Then

(a) (A + B )T = AT + BT .

(b) (sA)T = sAT .

(c) (AT )T = A.

PROOF We prove part (a). The rest are left as exercises.
(a) The matrices on each side of the equation are n × m matrices. So we

show that the (i , j )-entry of (A + B )T equals the (i , j )-entry of AT + BT . By the
definition of transpose, the (i , j )-entry of (A + B )T equals the (j , i )-entry of A + B ,
which is aji + bji . On the other hand, the (i , j )-entry of AT + BT equals the sum
of the (i , j )-entry of AT and the (i , j )-entry of BT , that is, aji + bji . Because the
(i , j )-entries of (A + B )T and AT + BT are equal, (a) is proved. �

7



8 CHAPTER 1 Matrices, Vectors, and Systems of Linear Equations

VECTORS
A matrix that has exactly one row is called a row vector, and a matrix that has exactly
one column is called a column vector. The term vector is used to refer to either a
row vector or a column vector. The entries of a vector are called components. In this
book, we normally work with column vectors, and we denote the set of all column
vectors with n components by Rn .

We write vectors as boldface lower case letters such as u and v, and denote the

i th component of the vector u by ui . For example, if u =



2
−4

7


, then u2 = −4.

Occasionally, we identify a vector u in Rn with an n-tuple, (u1, u2, . . . , un ).
Because vectors are special types of matrices, we can add them and multiply them

by scalars. In this context, we call the two arithmetic operations on vectors vector
addition and scalar multiplication. These operations satisfy the properties listed in
Theorem 1.1. In particular, the vector in Rn with all zero components is denoted by
0 and is called the zero vector. It satisfies u + 0 = u and 0u = 0 for every u in Rn .

Example 2
Let u =




2
−4

7


 and v =




5
3
0


. Then

u + v =



7
−1

7


 , u − v =




−3
−7

7


 , and 5v =




25
15
0


 .

For a given matrix, it is often advantageous to consider its rows and columns

as vectors. For example, for the matrix

�
2 4 3
0 1 −2

�
, the rows are

�
2 4 3

�
and

�
0 1 −2

�
, and the columns are

�
2
0

�
,

�
4
1

�
, and

�
3

−2

�
.

y

x

v
(a, b)

Figure 1.1 A vector in R2

Because the columns of a matrix play a more important role than the rows,
we introduce a special notation. When a capital letter denotes a matrix, we use the
corresponding lower case letter in boldface with a subscript j to represent the j th
column of that matrix. So if A is an m × n matrix, its j th column is

aj =




a1j

a2j
...

amj


 .

GEOMETRY OF VECTORS
For many applications,2 it is useful to represent vectors geometrically as directed line

segments, or arrows. For example, if v =
�
a
b

�
is a vector in R2, we can represent v

as an arrow from the origin to the point (a , b) in the xy-plane, as shown in Figure 1.1.

2 The importance of vectors in physics was recognized late in the nineteenth century. The algebra of
vectors, developed by Oliver Heaviside (1850–1925) and Josiah Willard Gibbs (1839–1903), won out over
the algebra of quaternions to become the language of physicists.

8



1.1 Matrices and Vectors 9

Example 3 Velocity Vectors A boat cruises in still water toward the northeast at 20 miles per
hour. The velocity u of the boat is a vector that points in the direction of the boat’s
motion, and whose length is 20, the boat’s speed. If the positive y-axis represents
north and the positive x -axis represents east, the boat’s direction makes an angle of

45◦ with the x -axis. (See Figure 1.2.) We can compute the components of u =
�

u1

u2

�

by using trigonometry:

RIVER

45Њ

N

E

u

Figure 1.2

u1 = 20 cos 45◦ = 10
√

2 and u2 = 20 sin 45◦ = 10
√

2.

Therefore u =
�

10
√

2

10
√

2



, where the units are in miles per hour.

VECTOR ADDITION AND THE PARALLELOGRAM LAW
We can represent vector addition graphically, using arrows, by a result called the
parallelogram law.3 To add nonzero vectors u and v, first form a parallelogram with
adjacent sides u and v. Then the sum u + v is the arrow along the diagonal of the
parallelogram as shown in Figure 1.3.

(a ϩ c, b ϩ d )

u ϩ v

(a, b)

(c, d)

y

x

v
u

Figure 1.3 The parallelogram law of vector addition

Velocities can be combined by adding vectors that represent them.

Example 4 Imagine that the boat from the previous example is now cruising on a river, which
flows to the east at 7 miles per hour. As before, the bow of the boat points toward
the northeast, and its speed relative to the water is 20 miles per hour. In this case,

the vector u =
�

10
√

2
10

√
2

�
, which we calculated in the previous example, represents the

boat’s velocity (in miles per hour) relative to the river. To find the velocity of the
boat relative to the shore, we must add a vector v, representing the velocity of the
river, to the vector u. Since the river flows toward the east at 7 miles per hour, its

velocity vector is v =
�

7
0

�
. We can represent the sum of the vectors u and v by using

the parallelogram law, as shown in Figure 1.4. The velocity of the boat relative to the
shore (in miles per hour) is the vector

u + v =
�

10
√

2 + 7

10
√

2



.

3 A justification of the parallelogram law by Heron of Alexandria (first century C.E.) appears in his Mechanics.

9



10 CHAPTER 1 Matrices, Vectors, and Systems of Linear Equations

North

East

water
velocity

boat
velocity

v

u

u ϩ v

45Њ

Figure 1.4

To find the speed of the boat, we use the Pythagorean theorem, which tells us
that the length of a vector with endpoint (p, q) is



p2 + q2. Using the fact that the

components of u + v are p = 10
√

2 + 7 and q = 10
√

2, respectively, it follows that
the speed of the boat is



p2 + q2 ≈ 25.44 mph.

SCALAR MULTIPLICATION

We can also represent scalar multiplication graphically, using arrows. If v =
�
a
b

�
is

a vector and c is a positive scalar, the scalar multiple cv is a vector that points in
the same direction as v, and whose length is c times the length of v. This is shown
in Figure 1.5(a). If c is negative, cv points in the opposite direction from v, and has
length |c| times the length of v. This is shown in Figure 1.5(b). We call two vectors
parallel if one of them is a scalar multiple of the other.

(ca, cb)

(ca, cb)

(a, b)

(a, b)

(a) c Ͼ 0

cv

cv

v

c Ͻ 0(b)

vy

x

y

x

Figure 1.5 Scalar multiplication of vectors

VECTORS IN R3

If we identify R3 as the set of all ordered triples, then the same geometric ideas that

hold in R2 are also true in R3. We may depict a vector v =



a
b
c


 in R3 as an arrow

emanating from the origin of the xyz -coordinate system, with the point (a , b, c) as its

10



1.1 Matrices and Vectors 11

z

y

x

u ϩ v

u

v

u3 ϩ v3

u1 ϩ v1

u2 ϩ v2

u3

u1

u2 v2

v1

v3

z

y

x

a

b

c
v

(a, b, c)

(a) (b) 

Figure 1.6 Vectors in R3

endpoint. (See Figure 1.6(a).) As is the case in R2, we can view two nonzero vectors
in R3 as adjacent sides of a parallelogram, and we can represent their addition by
using the parallelogram law. (See Figure 1.6(b).) In real life, motion takes place in
3-dimensional space, and we can depict quantities such as velocities and forces as
vectors in R3.

EXERCISES

In Exercises 1–12, compute the indicated matrices, where

A =
�
2 −1 5
3 4 1

�
and B =

�
1 0 −2
2 3 4

�
.

1. 4A 2. −A 3. 4A − 2B

4. 3A + 2B 5. (2B )T 6. AT + 2BT

7. A + B 8. (A + 2B )T 9. AT

10. A − B 11. −(BT ) 12. (−B )T

In Exercises 13–24, compute the indicated matrices, if possible,
where

A =
�
3 −1 2 4
1 5 −6 −2

�
and B =




−4 0
2 5

−1 −3
0 2


 .

13. −A 14. 3B 15. (−2)A

16. (2B )T 17. A − B 18. A − BT

19. AT − B 20. 3A + 2BT 21. (A + B )T

22. (4A)T 23. B − AT 24. (BT − A)T

In Exercises 25–28, assume that A =



3 −2
0 1.6

2π 5


.

25. Determine a12. 26. Determine a21.
27. Determine a1. 28. Determine a2.

In Exercises 29–32, assume that C =
�

2 −3 0.4
2e 12 0

�
.

29. Determine c1. 30. Determine c3.
31. Determine the first row of C .

32. Determine the second row of C .

y

x

30Њ

East

North

Figure 1.7 A view of the airplane from above

33. An airplane is flying with a ground speed of 300 mph
at an angle of 30◦ east of due north. (See Figure 1.7.)
In addition, the airplane is climbing at a rate of 10 mph.
Determine the vector in R3 that represents the velocity
(in mph) of the airplane.

34. A swimmer is swimming northeast at 2 mph in still water.

(a) Give the velocity of the swimmer. Include a sketch.

(b) A current in a northerly direction at 1 mph affects the
velocity of the swimmer. Give the new velocity and
speed of the swimmer. Include a sketch.

35. A pilot keeps her airplane pointed in a northeastward
direction while maintaining an airspeed (speed relative
to the surrounding air) of 300 mph. A wind from the west
blows eastward at 50 mph.

11



12 CHAPTER 1 Matrices, Vectors, and Systems of Linear Equations

(a) Find the velocity (in mph) of the airplane relative to
the ground.

(b) What is the speed (in mph) of the airplane relative to
the ground?

36. Suppose that in a medical study of 20 people, for each i ,
1 ≤ i ≤ 20, the 3 × 1 vector ui is defined so that its com-
ponents respectively represent the blood pressure, pulse
rate, and cholesterol reading of the i th person. Provide an
interpretation of the vector 1

20 (u1 + u2 + · · · + u20).

In Exercises 37–56, determine whether the state-
ments are true or false.

37. Matrices must be of the same size for their sum to be
defined.

38. The transpose of a sum of two matrices is the sum of the
transposed matrices.

39. Every vector is a matrix.

40. A scalar multiple of the zero matrix is the zero scalar.

41. The transpose of a matrix is a matrix of the same size.

42. A submatrix of a matrix may be a vector.

43. If B is a 3 × 4 matrix, then its rows are 4 × 1 vectors.

44. The (3, 4)-entry of a matrix lies in column 3 and row 4.

45. In a zero matrix, every entry is 0.

46. An m × n matrix has m + n entries.

47. If v and w are vectors such that v = −3w, then v and w
are parallel.

48. If A and B are any m × n matrices, then

A − B = A + (−1)B .

49. The (i , j )-entry of AT equals the (j , i )-entry of A.

50. If A =
�
1 2
3 4

�
and B =

�
1 2 0
3 4 0

�
, then A = B .

51. In any matrix A, the sum of the entries of 3A equals three
times the sum of the entries of A.

52. Matrix addition is commutative.

53. Matrix addition is associative.

54. For any m × n matrices A and B and any scalars c and
d , (cA + dB )T = cAT + dBT .

55. If A is a matrix, then cA is the same size as A for every
scalar c.

56. If A is a matrix for which the sum A + AT is defined, then
A is a square matrix.

57. Let A and B be matrices of the same size.

(a) Prove that the j th column of A + B is aj + bj .

(b) Prove that for any scalar c, the j th column of cA is
caj .

58. For any m × n matrix A, prove that 0A = O , the m × n
zero matrix.

59. For any m × n matrix A, prove that 1A = A.

60. Prove Theorem 1.1(a). 61. Prove Theorem 1.1(c).
62. Prove Theorem 1.1(d). 63. Prove Theorem 1.1(e).
64. Prove Theorem 1.1(g). 65. Prove Theorem 1.2(b).
66. Prove Theorem 1.2(c).

A square matrix A is called a diagonal matrix if aij = 0 when-
ever i �= j . Exercises 67–70 are concerned with diagonal matri-
ces.

67. Prove that a square zero matrix is a diagonal matrix.
68. Prove that if B is a diagonal matrix, then cB is a diagonal

matrix for any scalar c.
69. Prove that if B is a diagonal matrix, then BT is a diagonal

matrix.
70. Prove that if B and C are diagonal matrices of the same

size, then B + C is a diagonal matrix.

A (square) matrix A is said to be symmetric if A = AT . Exercises
71–78 are concerned with symmetric matrices.

71. Give examples of 2 × 2 and 3 × 3 symmetric matrices.
72. Prove that the (i , j )-entry of a symmetric matrix equals

the (j , i )-entry.
73. Prove that a square zero matrix is symmetric.
74. Prove that if B is a symmetric matrix, then so is cB for

any scalar c.
75. Prove that if B is a square matrix, then B + BT is sym-

metric.
76. Prove that if B and C are n × n symmetric matrices, then

so is B + C .
77. Is a square submatrix of a symmetric matrix necessarily

a symmetric matrix? Justify your answer.
78. Prove that a diagonal matrix is symmetric.

A (square) matrix A is called skew-symmetric if AT = −A.
Exercises 79–81 are concerned with skew-symmetric matrices.

79. What must be true about the (i , i )-entries of a skew-
symmetric matrix? Justify your answer.

80. Give an example of a nonzero 2 × 2 skew-symmetric
matrix B . Now show that every 2 × 2 skew-symmetric
matrix is a scalar multiple of B .

81. Show that every 3 × 3 matrix can be written as the sum
of a symmetric matrix and a skew-symmetric matrix.

82.4 The trace of an n × n matrix A, written trace(A), is
defined to be the sum

trace(A) = a11 + a22 + · · · + ann .

Prove that, for any n × n matrices A and B and scalar c,
the following statements are true:

(a) trace(A + B ) = trace(A) + trace(B ).
(b) trace(cA) = c · trace(A).
(c) trace(AT ) = trace(A).

83. Probability vectors are vectors whose components are
nonnegative and have a sum of 1. Show that if p and q are
probability vectors and a and b are nonnegative scalars
with a + b = 1, then ap + bq is a probability vector.

4 This exercise is used in Sections 2.2, 7.1, and 7.5 (on pages 115, 495, and 533, respectively).
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1.2 Linear Combinations, Matrix–Vector Products, and Special Matrices 13

In the following exercise, use either a calculator with matrix
capabilities or computer software such as MATLAB to solve the
problem:

84. Consider the matrices

A =




1.3 2.1 −3.3 6.0
5.2 2.3 −1.1 3.4
3.2 −2.6 1.1 −4.0
0.8 −1.3 −12.1 5.7

−1.4 3.2 0.7 4.4




and

B =




2.6 −1.3 0.7 −4.4
2.2 −2.6 1.3 −3.2
7.1 1.5 −8.3 4.6

−0.9 −1.2 2.4 5.9
3.3 −0.9 1.4 6.2




.

(a) Compute A + 2B .

(b) Compute A − B .

(c) Compute AT + BT .

SOLUTIONS TO THE PRACTICE PROBLEMS

1. (a) The (1, 2)-entry of A is 2.

(b) The (2, 2)-entry of A is 3.

2. (a) A − B =
�
2 −1 1
3 0 −2

�
−

�
1 3 0
2 −1 4

�

=
�
1 4 −1
1 1 −6

�

(b) 2A = 2

�
2 −1 1
3 0 −2

�
=

�
4 −2 2
6 0 −4

�

(c) A + 3B =
�
2 −1 1
3 0 −2

�
+ 3

�
1 3 0
2 −1 4

�

=
�
2 −1 1
3 0 −2

�
+

�
3 9 0
6 −3 12

�

=
�
5 8 1
9 −3 10

�

3. (a) AT =



2 3
−1 0

1 −2




(b) (3B )T =
�
3 9 0
6 −3 12

�T

=



3 6
9 −3
0 12




(c) (A + B )T =
�
3 2 1
5 −1 2

�T

=



3 5
2 −1
1 2




1.2 LINEAR COMBINATIONS, MATRIX–VECTOR
PRODUCTS, AND SPECIAL MATRICES

In this section, we explore some applications involving matrix operations and introduce
the product of a matrix and a vector.

Suppose that 20 students are enrolled in a linear algebra course, in which two

tests, a quiz, and a final exam are given. Let u =




u1

u2
...

u20


, where ui denotes the score

of the i th student on the first test. Likewise, define vectors v, w, and z similarly for the
second test, quiz, and final exam, respectively. Assume that the instructor computes
a student’s course average by counting each test score twice as much as a quiz score,
and the final exam score three times as much as a test score. Thus the weights for the
tests, quiz, and final exam score are, respectively, 2/11, 2/11, 1/11, 6/11 (the weights
must sum to one). Now consider the vector

y = 2

11
u + 2

11
v + 1

11
w + 6

11
z.

The first component y1 represents the first student’s course average, the second com-
ponent y2 represents the second student’s course average, and so on. Notice that y is
a sum of scalar multiples of u, v, w, and z. This form of vector sum is so important
that it merits its own definition.

13



14 CHAPTER 1 Matrices, Vectors, and Systems of Linear Equations

Definitions A linear combination of vectors u1, u2, . . . , uk is a vector of the form

c1u1 + c2u2 + · · · + ckuk ,

where c1, c2, . . . , ck are scalars. These scalars are called the coefficients of the linear
combination.

Note that a linear combination of one vector is simply a scalar multiple of that
vector.

In the previous example, the vector y of the students’ course averages is a linear
combination of the vectors u, v, w, and z. The coefficients are the weights. Indeed,
any weighted average produces a linear combination of the scores.

Notice that
�
2
8

�
= (−3)

�
1
1

�
+ 4

�
1
3

�
+ 1

�
1

−1

�
.

Thus

�
2
8

�
is a linear combination of

�
1
1

�
,

�
1
3

�
, and

�
1

−1

�
, with coefficients −3, 4,

and 1. We can also write
�
2
8

�
=

�
1
1

�
+ 2

�
1
3

�
− 1

�
1

−1

�
.

This equation also expresses

�
2
8

�
as a linear combination of

�
1
1

�
,

�
1
3

�
, and

�
1

−1

�
,

but now the coefficients are 1, 2, and −1. So the set of coefficients that express one

vector as a linear combination of the others need not be unique.

Example 1

(a) Determine whether

�
4

−1

�
is a linear combination of

�
2
3

�
and

�
3
1

�
.

(b) Determine whether

�−4
−2

�
is a linear combination of

�
6
3

�
and

�
2
1

�
.

(c) Determine whether

�
3
4

�
is a linear combination of

�
3
2

�
and

�
6
4

�
.

Solution (a) We seek scalars x1 and x2 such that

�
4

−1

�
= x1

�
2
3

�
+ x2

�
3
1

�
=

�
2x1

3x1

�
+

�
3x2

1x2

�
=

�
2x1 + 3x2

3x1 + x2

�
.

That is, we seek a solution of the system of equations

2x1 + 3x2 = 4
3x1 + x2 = −1.

Because these equations represent nonparallel lines in the plane, there is exactly

one solution, namely, x1 = −1 and x2 = 2. Therefore

�
4

−1

�
is a (unique) linear

14



1.2 Linear Combinations, Matrix–Vector Products, and Special Matrices 15

combination of the vectors

�
2
3

�
and

�
3
1

�
, namely,

�
4

−1

�
= (−1)

�
2
3

�
+ 2

�
3
1

�
.

(See Figure 1.8.)

2 
3

2 
3

3 
1

3 
1

4 
Ϫ1

2

(Ϫ1)

y

x

Figure 1.8 The vector

�
4

−1

�
is a linear combination of

�
2
3

�
and

�
3
1

�
.

(b) To determine whether

�−4
−2

�
is a linear combination of

�
6
3

�
and

�
2
1

�
, we

perform a similar computation and produce the set of equations

6x1 + 2x2 = −4
3x1 + x2 = −2.

Since the first equation is twice the second, we need only solve 3x1 + x2 = −2. This
equation represents a line in the plane, and the coordinates of any point on the line
give a solution. For example, we can let x1 = −2 and x2 = 4. In this case, we have

�−4
−2

�
= (−2)

�
6
3

�
+ 4

�
2
1

�
.

There are infinitely many solutions. (See Figure 1.9.)

y

x

6 
3

2 
1

Ϫ4 
Ϫ2

Figure 1.9 The vector

�−4
−2

�
is a linear combination of

�
6
3

�
and

�
2
1

�
.

15



16 CHAPTER 1 Matrices, Vectors, and Systems of Linear Equations

(c) To determine if

�
3
4

�
is a linear combination of

�
3
2

�
and

�
6
4

�
, we must solve

the system of equations

3x1 + 6x2 = 3
2x1 + 4x2 = 4.

If we add − 2
3 times the first equation to the second, we obtain 0 = 2, an equation

with no solutions. Indeed, the two original equations represent parallel lines in the

plane, so the original system has no solutions. We conclude that

�
3
4

�
is not a linear

combination of

�
3
2

�
and

�
6
4

�
. (See Figure 1.10.)

y

x

3 
4

3 
2

6 
4

Figure 1.10 The vector

�
3
4

�
is not a linear combination of

�
3
2

�
and

�
6
4

�
.

Example 2 Given vectors u1, u2, and u3, show that the sum of any two linear combinations of
these vectors is also a linear combination of these vectors.

Solution Suppose that w and z are linear combinations of u1, u2, and u3. Then we
may write

w = au1 + bu2 + cu3 and z = a �u1 + b �u2 + c�u3,

where a , b, c, a �, b �, c� are scalars. So

w + z = (a + a �)u1 + (b + b�)u2 + (c + c�)u3,

which is also a linear combination of u1, u2, and u3.

STANDARD VECTORS

We can write any vector

�
a
b

�
in R2 as a linear combination of the two vectors

�
1
0

�

and

�
0
1

�
as follows:

�
a
b

�
= a

�
1
0

�
+ b

�
0
1

�

16



1.2 Linear Combinations, Matrix–Vector Products, and Special Matrices 17

The vectors

�
1
0

�
and

�
0
1

�
are called the standard vectors of R2. Similarly, we can

write any vector




a
b
c


 in R3 as a linear combination of the vectors




1
0
0


,




0
1
0


, and




0
0
1


 as follows:




a
b
c


 = a




1
0
0


 + b




0
1
0


 + c




0
0
1




The vectors




1
0
0


,




0
1
0


, and




0
0
1


 are called the standard vectors of R3.

In general, we define the standard vectors of Rn by

e1 =




1
0
...

0


 , e2 =




0
1
...

0


 , . . . , en =




0
0
...

1


 .

(See Figure 1.11.)

e1

e2

x

x

y

e2

e3

e1

y

z

The standard vectors of R2 The standard vectors of R3

Figure 1.11

u

w

v

y

x
bv

au

Figure 1.12 The vector w is a lin-
ear combination of the nonparal-
lel vectors u and v.

From the preceding equations, it is easy to see that every vector in Rn is a linear
combination of the standard vectors of Rn . In fact, for any vector v in Rn ,

v = v1e1 + v2e2 + · · · + vnen .

(See Figure 1.13.)
Now let u and v be nonparallel vectors, and let w be any vector in R2. Begin

with the endpoint of w and create a parallelogram with sides au and bv, so that w
is its diagonal. It follows that w = au + bv; that is, w is a linear combination of the
vectors u and v. (See Figure 1.12.) More generally, the following statement is true:

If u and v are any nonparallel vectors in R2, then every vector in R2 is a linear
combination of u and v.

17



18 CHAPTER 1 Matrices, Vectors, and Systems of Linear Equations

v2e2

v1e1

x

x

y

The vector v is a
linear combination of

standard vectors in R2.

The vector v is a
linear combination of

standard vectors in R3.

v ϭ v1e1 ϩ v2e2 v3e3

y

z

v ϭ v1e1 ϩ v2e2 ϩ v3e3

v1e1 ϩ v2e2

v2e2

v1e1

Figure 1.13

Practice Problem 1 � Let w =
�−1

10

�
and S =

��
2
1

�
,

�
3

−2

��
.

(a) Without doing any calculations, explain why w can be written as a linear combi-
nation of the vectors in S.

(b) Express w as a linear combination of the vectors in S. �

Suppose that a garden supply store sells three mixtures of grass seed. The deluxe
mixture is 80% bluegrass and 20% rye, the standard mixture is 60% bluegrass and
40% rye, and the economy mixture is 40% bluegrass and 60% rye. One way to record
this information is with the following 2 × 3 matrix:

B =
deluxe standard economy�

.80 .60 .40

.20 .40 .60

�
bluegrass

rye

A customer wants to purchase a blend of grass seed containing 5 lb of bluegrass
and 3 lb of rye. There are two natural questions that arise:

1. Is it possible to combine the three mixtures of seed into a blend that has exactly
the desired amounts of bluegrass and rye, with no surplus of either?

2. If so, how much of each mixture should the store clerk add to the blend?

Let x1, x2, and x3 denote the number of pounds of deluxe, standard, and economy
mixtures, respectively, to be used in the blend. Then we have

.80x1 + .60x2 + .40x3 = 5

.20x1 + .40x2 + .60x3 = 3.

This is a system of two linear equations in three unknowns. Finding a solution of this
system is equivalent to answering our second question. The technique for solving
general systems is explored in great detail in Sections 1.3 and 1.4.

Using matrix notation, we may rewrite these equations in the form

�
.80x1 + .60x2 + .40x3

.20x1 + .40x2 + .60x3

�
=

�
5
3

�
.

18



1.2 Linear Combinations, Matrix–Vector Products, and Special Matrices 19

Now we use matrix operations to rewrite this matrix equation, using the columns of
B , as

x1

�
.80
.20

�
+ x2

�
.60
.40

�
+ x3

�
.40
.60

�
=

�
5
3

�
.

Thus we can rephrase the first question as follows: Is

�
5
3

�
a linear combination of the

columns

�
.80
.20

�
,

�
.60
.40

�
, and

�
.40
.60

�
of B? The result in the box on page 17 provides an

affirmative answer. Because no two of the three vectors are parallel,

�
5
3

�
is a linear

combination of any pair of these vectors.

MATRIX–VECTOR PRODUCTS
A convenient way to represent systems of linear equations is by matrix–vector prod-

ucts. For the preceding example, we represent the variables by the vector x =
⎡
⎣

x1

x2

x3

⎤
⎦

and define the matrix–vector product Bx to be the linear combination

Bx =
�
.80 .60 .40
.20 .40 .60

�⎡
⎣

x1

x2

x3

⎤
⎦ = x1

�
.80
.20

�
+ x2

�
.60
.40

�
+ x3

�
.40
.60

�
.

This definition provides another way to state the first question in the preceding

example: Does the vector

�
5
3

�
equal Bx for some vector x? Notice that for the

matrix–vector product to make sense, the number of columns of B must equal the
number of components in x. The general definition of a matrix–vector product is given
next.

Definition Let A be an m × n matrix and v be an n × 1 vector. We define the
matrix–vector product of A and v, denoted by Av, to be the linear combination of
the columns of A whose coefficients are the corresponding components of v. That is,

Av = v1a1 + v2a2 + · · · + vnan .

As we have noted, for Av to exist, the number of columns of A must equal the
number of components of v. For example, suppose that

A =
⎡
⎣

1 2
3 4
5 6

⎤
⎦ and v =

�
7
8

�
.

Notice that A has two columns and v has two components. Then

Av =
⎡
⎣

1 2
3 4
5 6

⎤
⎦

�
7
8

�
= 7

⎡
⎣

1
3
5

⎤
⎦ + 8

⎡
⎣

2
4
6

⎤
⎦ =

⎡
⎣

7
21
35

⎤
⎦ +

⎡
⎣

16
32
48

⎤
⎦ =

⎡
⎣

23
53
83

⎤
⎦ .
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Returning to the preceding garden supply store example, suppose that the store
has 140 lb of seed in stock: 60 lb of the deluxe mixture, 50 lb of the standard mixture,

and 30 lb of the economy mixture. We let v =



60
50
30


 represent this information. Now

the matrix–vector product

Bv =
�
.80 .60 .40
.20 .40 .60

� 


60
50
30




= 60

�
.80
.20

�
+ 50

�
.60
.40

�
+ 30

�
.40
.60

�

=
seed (lb)�

90
50

�
bluegrass

rye

gives the number of pounds of each type of seed contained in the 140 pounds of
seed that the garden supply store has in stock. For example, there are 90 pounds of
bluegrass because 90 = .80(60) + .60(50) + .40(30).

There is another approach to computing the matrix–vector product that relies
more on the entries of A than on its columns. Consider the following example:

Av =
�
a11 a12 a13

a21 a22 a23

�


v1

v2

v3




= v1

�
a11

a21

�
+ v2

�
a12

a22

�
+ v3

�
a13

a23

�

=
�
a11v1 + a12v2 + a13v3

a21v1 + a22v2 + a23v3

�

Notice that the first component of the vector Av is the sum of products of the corre-
sponding entries of the first row of A and the components of v. Likewise, the second
component of Av is the sum of products of the corresponding entries of the second
row of A and the components of v. With this approach to computing a matrix–vector
product, we can omit the intermediate step in the preceding illustration. For example,
suppose

A =
�
2 3 1
1 −2 3

�
and v =




−1
1
3


 .

Then

Av =
�
2 3 1
1 −2 3

�


−1
1
3


 =

�
(2)(−1) + (3)(1) + (1)(3)

(1)(−1) + (−2)(1) + (3)(3)

�
=

�
4
6

�
.
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